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ABSTRACT 
In the Sahelian region of West Africa most of the population lives agro-pastoral activities. The air trafficking, 

which is a source of sustainable development of countries which constitute this climatic zone develops. Hence 

the need for a weather forecast in the short and medium term. 

In this work, it is a question of trying to restore the humidity of the atmosphere using neural networks. The 

model of liebe associated modtran 6 with us allowed to establish profiles of radiances. These structures are 

compared to those of the satellite. We obtained satisfactory results on the humidity profiles. 

 

KEYWORDS: Humidity, sahel, Satellite, neuronal networks, radiatif transfer. 

 

1. INTRODUCTION 
The history of formal neurons goes back to cybernetics, in the forties of the past, when biologists, physicists, 

mathematicians and engineers came together to try to simulate, using electronic components, biological, 

physical, or even social phenomena. In technical terms, formal neurons are automata that characterize, by a 

mathematical definition, what we imagined to be, at the time of cybernetics, the function of neurons in our 

brain, namely the memorization of information elementary binary. 

Artificial neural networks are composed of simple elements (or neurons) operating in parallel. These elements 

were strongly inspired by the biological nervous system (Figure 1). As in nature, the functioning of the (neuron) 

network is strongly influenced by the connection of the elements to each other. We can train a neuron network 

for a specific task (character recognition for example) by adjusting the values of the connections (or weights) 

between the elements (neuron).  

In general, the learning of the neural networks is done so that for a particular input presented to the network 

corresponds a specific target. 
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Figure 1.  Nerve cells (neurons) with branches (dendrites) connected to more 

than 100 trillion points of connections. Scientists call this dense network of ramifications the "forest of neurons". 

 

This is the classification of clouds which received the first applications of neural networks in physics of the 

atmosphere  [1]. Formal networks have indeed useful features for pattern recognition and image analysis. This is 

the approach taken by Lee et al. (1990) [2] for their classification, followed by work Welch et al. (1992) [3]and 

Bankert (1994) [4] and Bankert and Aha (1996) [5].  

                           

Then the generally non-linear responses of electromagnetic waves with geophysical parameters, justifying the 

increasing use of this inversion technique. For example, Krasnopolsky et al. (2000) [6], from a multi-channel 

approach, propose a neural network algorithm for ocean refunds based on SSM / I (surface wind speed, water 

vapor column, and liquid water column).         

                                        

Rainfall also have obviously been many studies using neural networks. Tsindikis et al. (1997) [7] adopted the 

first this method with brightness temperatures and rain rate output of the network, generated by a 3D radiative 

transfer model and a stochastic 3D cloud model, with a generalization from the SSM / I data. In approaches at 

the regional level, various types of data were also used as rain gauges and radar data (Matsoukas et al., 1999) 

[8], or the combination of data on the PR rain radar and the GOES multispectral imaging (Bellerby et al., 2000) 

[9]. In this latest study, statistical information are co-located with precipitation measurements to incorporate 

information on the cloud texture. Chopin et al, (2004) [10] combine input their data network Meteosat, GOES 

and TRMM precipitation to recover the data from TRMM radar is also used as network outputs. In principle one 

can obtain a relationship between the rain rate the ground and radar observations. However, it is difficult to 

express it in the usual way. Neural networks provide a mechanism to solve this complex problem. Li et al. 

(2003) [11] using this technique and use measurements of rain rate as the target output of the network, and the 

radar data as input to find the surface rain rate. Networks are also used to find the LWC (liquid water content) 

over oceans (Jung et al., 1998[12]; Aires et al., 2001) [13] or to obtain vertical temperature profiles from 

radiometers MW data as the SSM / T1 (Churnside et al., 1994[14];. Bauer et al, 2005) [15] or a combination of 

MW and IR (Kuligowski and Barros, 2001) [16]     

                                                      . 

The signing of the microwave broadcast retrieves the surface parameters such as those related to snow (Davis et 

al., 1993) [17] or sea ice (Fuhrhop et al., 1998) [18]. Jones and Peterson (1999) [19] propose a method to render 

the ocean surface temperature. Labroue et al. (2003) [20] propose a method of surface salinity refund from 

SMOS brightness temperatures (Soil Moisture and Ocean Salinity). The inversion algorithm is improved when 

adding additional  
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parameters such as the surface temperature or the speed of the wind surface. Kretzschmar et al. (2004) [21] 

using a classification neural network for prediction of surface wind speed. Faure et al. (2001a, b) [22], [23] and 

more recently Cornet (2003) [24] marked the beginning of refunds parameters derived from the IR / VIS as 

optical thickness, the effective radius, the fractional coverage or even heterogeneous sub-pixel ( defined by the 

standard deviation of the optical thickness). They came into use neural networks, the multispectral reflectance 

from clouds generated by a multiplicative cascade process. The effects of heterogeneities on refunds 

precipitation from passive microwave was studied by Lafont [25]and quotes in 2004 and Lafont, O.jourdan 

Guillemet and Bernard [26]still in the same year (2004) using the network neurons. 

 

Still in a satellite data inversion order to obtain meteorological parameters, neural networks will be for us a way 

to connect the microwave physical information and spatial information from sensors higher satellites resolution 

(or http://www.esa.int/export/esaLP/smos.html http://www.cesbio.ups-tlse.fr/us/indexsmos.html) [27]. 

 

The problem of non-linear inversion equation is solved by these networks as an optimization problem. The 

satellite data inversion procedure requires the use of a large number of data channels and containing sufficient 

information on the temperature and relative humidity to be recovered. To restore these settings by cloudy 

weather, we estimated, using atmospheres summer (between June and October in the Sahel). We have already 

shown in a previous study that the parameters do not present too great a degree of correlation. Correlation 

analyzes are given by the studies by B. Diop in 1995[28] then by B. Diop and A. Diop in 2007[29]. 

 

The neural network method used here allow us this inversion of satellite data. Neural methods are increasingly 

used in atmospheric physics ( Krasnopolsky et al 2003a, 2003b) [30] [31] whether for the simulation of complex 

processes or some rendering issues. These techniques have advantages for some of the problems encountered in 

atmospheric sciences: they can approach the complex functions of several variables without knowing the exact 

form of these functions (Denison et al., 2002) [32]; they are fast, flexible if the problem at hand has been well 

analyzed (Cheng  and Titterington, 1994) [33]. 

 

2. MULTILAYER PERCEPTRON 
The multilayer perceptron is a type of network most used neurons because it allows, through its many 

connections, performing nonlinear associations between two vectors. 

A neuron has N inputs and one output (Figure 2). Each entry is associated with a wireless weight. The first 

operation performed is a weighted sum of the weight vector W of the input data, to which is added a bias b. is 

thus obtained, if X represents the N components of the input vector 

 

   

 
Figure 2. General model of the formal neuron 

 

To this sum is then applied a feature called f1 or activation function neuron function. Different functions can be 

applied, their choice depends on the complexity of the network that is used; may be (i,ii,iii,iv) 

- 
 

- 
 

- 
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- 
- Linear Functions : 

                                     avec 
                    (i)                   

 

- 
- Shreshold funtions :  

                                    Y 
       

(ii)

                                              
 

       - Sigmoid Functions :   Y = 
          

(iii)

                                   
 

-  The output                 
 (iv)

                                   
                          

A multilayer perceptron (Figure 3) is composed of an assembly of neurons distributed over L layers. The first 

layer corresponding to the vector composed of the input data and the last layer output vector composed of the 

values which it is desired to obtain. In between, there are a number of layers "caches". The complexity of the 

network depends on the number of hidden layers and the number of elementary neurons each component layer. 

 

 

 
Figure 3 multilayer perceptron 

 

3. USING NEURAL NETWORKS 
The neural network is a type of parametric model that creates a nonlinear association between inputs and 

outputs. To achieve this combination, the different network coefficients must be adjusted. This adjustment is 

performed by minimizing the differences between the calculated outputs corresponding to the known input and 

the true output values. Once the examples have allowed the adjustment of the coefficients of the network, a test 

phase is required to evaluate the network performance. The use of neuronal methods thus breaks down into three 

phases: 

 

Construction based learning, that is to say obtaining input-output pairs; 

Neural network learning that corresponds to the adjustment of the various coefficients of the neural network; 

Generalization phase of evaluating the performance of the neural network using data that were used during the 

learning phase. 
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4. BULDING OF THE LEARNING BASE 
The construction of the training base is the key step for the proper functioning of the networks. The data should 

be representative of a maximum possible situations because a well constructed neural network has very good 

interpolation properties but can also lead to large errors when it must extrapolate (Krasnopolsky and Schiller, 

2000; 2003a) [34] [35]. this is why it appears preferable to use synthetic data that control the range of variation 

of the different parameters and thus to take into account extreme situations that may not exist a measured data 

set . The radiative transfer model used for the simulation data must correspond better to the actual measurements 

for the learning network is not biased by the learning model. 

 

5. LEARNING NEURAL NETWORKS 
Once built the base data, input vectors and associated target vectors are present in the neural network to allow 

adjustment of network coefficients (THIRIA et al., 1997) [36]. For an input vector  NnxX n ,...,1);(  ,  

learning is to minimize the difference between the output given by the neural network 

  Mmss m ,...,1);(  and the desired output  Mmtt m ,...,1);(  > RE cost function of the 

empirical risk is often minimize the mean square error, W * coefficients are determined by minimizing RE (v) 
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 To perform this minimization, the method used "back propagation of the error gradient" (or 

"backpropagation"). The basic idea is that at any point W, the gradient vector of the empirical risk fatou points 

in the direction of the growing empirical risk. To decrease fff simply move in the opposite direction of the 

gradient .gamma. This is an iterative algorithm of changing the weight vector wi of the ith layer in iteration k 

according to (vi): 
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It is possible to use a method of Newton-type (viii): 
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Where H is the Hessian matrix and the gradient vector g.. 

 

To accelerate the convergence of the minimization, the Hessian matrix is expressed as a function of the Jacobian 

matrix J (matrix of the first derivatives) by  JJH T  and the gradient vector eJg T  with e the vector of 

network errors.The Levenberg-Marquardt algorithm we chose, used as approximation for the Hessian 

matrix:(ix) 

 

  eJIJJkW TT

i

1
)(


              (ix) 

 

Where  


is the adjustment parameter. 
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When zero, the method returns to a Newton-type method using the approximation of the Hessian matrix. When 


  at a great value, this method corresponds to a method of lowering the error gradient is with no small 

learning. 

 

In fact, 


 adjusts the learning step on each iteration, it decreases whenever the result of the objective function 

is improved (the learning step increases, which accelerates the convergence). 

 

Estimating the G function to connect the inputs and outputs from a small number of data D, is an "ill-posed" 

problem in the sense of minimizing the empirical standard deviation exists but is not unique (THIRIA et al., 

1997) [37]. A regularization method can transform evil into good problem poses problem posed by imposing 

constraints. 

 

6. REGULARIZATION WITH THE BAYESIAN APPROACH 
The classical regularization methods add a penalty term to the function of costs which can result eg: 

 

 

 

- 
By penalizing heavy weights (x) 

- 
 

                   


j

jW 2
                                        (x) 

- 
 

- 
By penelizing large and small weights (Weigend et al, ; 1991) (xi) : 

                         
j j

j

W

W

2

2

1
                                (xi) 

 

With Bayesian formalism [38,39,40,41]., weights and bias are assumed to be random variables with specific 

probability distributions. Learning of the neural network is to determine the probability distribution of weight 

knowing the training data are attributed to weight a priori probability fixed and once the training data were 

observed, this is a priori probability transformed into probability postiori through the Bayes theorem.                              

If D represents the set of learning data, P (W) the a priori probability density function of the weight, P (D / W) 

of the probability density of observed data knowing the weight of the networks and P (D / W) to postiori the 

probability that one seeks to determine the Bayes theorem is (xii): 
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For example, it is assumed a priori weight distribution, Gaussian, such that (xiii): 
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Where   then the parameter chosen to minimize the probability postiori and )(WZ  is a normalization 

constant depending only  .     

         

All examples presented to the neural network during the learning phase will obviously contains not all actually 

observable examples. Assuming that all unobservable inputs has a Gaussian shape centered on O and 
2  

variance, then it is shown that (xiv): 
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Posteriori probability is thus written (xv): 
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Maximize the probability a posteriori is therefore to minimize the amount M (W) can be rewritten (xvi): 

 

 

    )(ln
1

)(
2

WPRWM E 


                                          (xvi) 

 

This equation can be interpreted as a cost function with penalty as function of the logarithm of the a priori 

weight distribution. 

 

 Generalization phase   

The generalization phase is to test whether learning of the network is done correctly. To perform this test, input 

vectors which have been used in the learning phase is presented to the neural network. The gap must be obtained 

weak. In general, the database used is randomly separated into two parts: one part is used for learning and 

generalization for the second phase. Several reasons can be learned that the network gives poor results: 

 

Quite simply, the neural network input data did not provide enough information to approach the desired output.                                         

The network is not complex enough for the type of approach desired function, in this case, simply increase the 

number of hidden layers and the number of neurons per layer. 

 

It is in a case of over-fitting is to say that the neural network is able to perfectly calculate the output vector for 

the input vectors used for learning but not capable of processing data unknown. This suggests that the number of 

examples used was too high or the network architecture is too complex for the problem to treat. The baseyienne 

approach developed by Mackay (1992) and improved by Neal (1996) avoids this scenario because the simplest 

models are favored over complex models by the regularization term. The initialization of the network 

coefficients to or different stages of minimization do not allow the network to converge. This feature depends on 

the data set used and the order in which the examples are presented for learning. To work around this last 
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problem, we will make several cases for learning and giving the network the lowest generalization error phase 

will be retained. 

 

7. CONSTRUCTION OF THE DATABASE 
For learning neural networks, we must have a representative as possible database. It must contain the target 

parameters of the neural network (meteorological parameters) and corresponding data (luminance at different 

levels and different wavelengths). 

 

Data 
We built our database from Dakar-Yoff radiosonde and satellite data we used the data provided by the orbits 

LERG  

 

We extracted MSU radiances orbits are the center frequencies are given in Table 1 NOAA 14 from MetOffice 

AAPP software responsible for processing the orbits of the NOAA KLM. 

 

 
Table 1.  Channels MSU MSU sounder which measures radiation in the field of microwave to calculate atmospheric 

moisture profiles. 

Channels MSU 1 2 3 

Fréquencies (GHz) 50.31 53.73 54.96 

Levels (hPa) 1010 700 300 

 

   At frequencies given in Table 1 are associated weight functions in Figure 4 

 

 
Figure 4. Weight function (MSU). 

 

The weight functions for instrument MSU show that the energy contribution for each instrument channel from a 

considerable thickness atmosphere with a significant overlap between adjacent channels. Each channel 

represents a layer rather than a specific level. 

 

The NOAA HRPT data is acquired in teaching Laboratory and Research in Geomatics (LERG, ISRA / UCAD) 

and presented in Table 2. 
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Table 2.  The NOAA HRPT data is acquired LONG (ISRA / UCAD). 

Column 1: orbit number; Column 2: transition date on the study area, column 3: Passage Time (recording); column 4: 

the satellite track with geographic coordinates; Column 5: synoptic of the atmosphere. 

      

Sat Orb Date Hour Trace        Zone Notes 

1413782 970902 40745 C.Vert     33N -> 3N  

1413788 970902 151951 W Dakar    2S -> 27N  

1413796 970903 35635 E C.Vert   32N -> 3N S.L south senegal 

1413802 970903 150937 Dakar      1N -> 27N  

1413810 970904 34557 W Dakar    30N -> Eq  

1413816 970904 145837 Sénégal    1N -> 30N Covered 

1413824 970905 33454 W Dakar    30N -> Eq Covered 

1413830 970905 144650 Mauritanie Eq -> 33N  

1413838 970906 32305 Senegal    32N -> 4S  

1413852 970907 31210 Bamako     31N -> 4S S.L North Senegal 

1413866 970908 30210 Mali       27N -> 3N  

1413880 970909 25039 Mali       28N -> 3N  

1413887 970909 154541 C.Vert     4N -> 25N  

1413894 970910 24037 Mali       26N -> 1N S.L South east Senegal 

1413901 970910 153333 E C.Vert   Eq -> 28N  

1413909 970911 141011 C.Vert     30N -> 3N S.L on Senegal 

1413915 970911 152227 W Dakar    Eq -> 30N Covered 

1413923 970912 35924 C.Vert     29N -> 3N Covered 

1413929 970912 151141 Dakar      3N -> 33N  

1413937 970913 34813 W Dakar    29N -> Eq  

1413943 970913 150011 Sénégal    Eq -> 29N  

1413951 970914 33706 Sénégal    29N -> 8N  

1413971 970915 143908 Mauritanie 6N -> 36N  

1413979 970916 31530 E Sénégal  27N -> Eq  

1413985 970916 142900 Mauritanie 9N -> 38N  

1413993 970917 30328 Bamako     30N -> 3N  

1414028 970919 153638 C.Vert     4N -> 28N  

1414042 970920 152546 W Dakar    6N -> 22N Covered 

1414050 970921 40039 C.Vert     30N -> 3N  

1414056 970921 151406 Dakar      3N -> 30N  

1414070 970922 150211 Sénégal    1N -> 29N  

1414078 970923 33917 Dakar      27N -> Eq  

1414084 970923 145148 Bamako     4N -> 30N  

1414092 970924 32805 E Dakar    27N -> Eq  

1414098 970924 144116 Mauritanie 6N -> 36N  

1414106 970925 31732 Sénégal    26N -> Eq S.L  Senegal 

1414112 970925 143010 Mauritanie 7N -> 37N Covered        
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1414163 970929 41315 E C.Vert   31N -> 4N Covered 

1414169 970929 152647 W Dakar    3N -> 30N  

1414177 970930 40301 C.Vert     28N -> 3N Covered 

1414183 970930 151511 Dakar      1N -> 33N S.L South Senegal 
 

 

The radiance data calculated 
The radiance data calculated (Figures 5; 6; 7; 8) are obtained using the MPM93 Liebe code that we modified. 

On calculates the radiance of an atmosphere in the field of microwave several pressure levels.  

A program calculates the weighting functions and brightness temperatures for microwave frequencies of 1 to 

1000 GHz. The meteorological variables (height, pressure, temperature, air density, water vapor and aerosols) 

and emissivity constitute the inputs of the code for obtaining the radiance profile of the atmosphere. 

In Figure 5 we have the means of composite profiles radiances calculated using radiosonde has carried out two 

hours before the SL passages we note we have a maximum around 700 hPa to 50.31 GHz and 53.73 GHz 

channels except for profile 54.96 radiance of the channel. For the channel is a maximum to 800 hPa. 

 

 
                                a                                                          b                                                      c 

Figure 5. Average profile of Radiance 2 hours before the passage of  squall line (SL) 

a) 50.31 GHz ;  b) 53.73GHz ; c) 54.96 GHz 
 

In Figure 6 we have the composition of the average profiles radiance with soundings made the passage of SL we 

note we have a maximum at about 600 hPa. A slight variation of the radiance between 800 hPa and 450 hPa. 

The radiance profile 54.96 GHz channel we have the maximum at 500 hPa and a slight variation of the radiance 

between 800 hPa and 500 hPa. 

 

 
                           a                                                      b                                                                        c 

Figure 6. Average profile of Radiance at  the passage of  squall line 

a)  50.31 GHz ;  b) 53.73z ; c) 54.96 GHz 

 

In Figure 7 the composition we mean profiles radiances using radiosonde performed at 2 hours after the passage 

of SL We note we have a maximum 700hPa to 50.31 GHz for channel and a relatively marked change in 

radiance between 1000hPa and 700hPa. The radiance profile channel as 53.73 to 54.96 GHz channel we have  
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the maximum at 400hPa. We also note a slight change in radiance between 800hPa and 400hPa 53.73 for the 

channel and the same between 800hPa and 500hPa to 54.96 GHz channel. 

 

 
                                     a                                                    b                                                  c 

Figure 7. Average profile radiance two hours after the passage of SL 

a)  50.31 GHz ;  b) 53.73z ; c) 54.96 GHz 

 

In Figure 8 we have the composition means profiles radiances with radiosonde performed at 4 hours after the 

passage of SL We note we have a maximum to 700hPa for channel 50.31 GHz and a relatively marked change 

in radiance between 1000hPa and 700hPa . The radiance profile shows a channel 53.73 maxima at 650hPa. 

54.96 GHz for channel we have the maximum at 400hPa. We also note a slight change in radiance between 

800hPa and 600hPa to 54.96 GHz channel. 

 

 
                                    a                                                       b                                                           c 

Figure 8.  Average profile radiance four hours after the passage of squall line  (SL) 

 a)  50.31 GHz ;  b) 53.73z ; c) 54.96 GHz 

 

We see differences between the vertical profiles of the atmosphere means for radiance. These differences are 

due to the position of surveys internally convective type SL systems 

 

8. RESULTS ANALYSIS 
Although the most difficult problem is the inversion of the radiative transfer equation, it is important to have a 

fast direct model, for the basic construction of data. The Liebe MPM93 modified code has been developed for 

this purpose at LSAO. 

 

Analyse de l’apprentissage  Learning analytics 
We therefore tested the ability of neurons to the forward model network, that is to say that we present at the 

input of the neural network state temperature profiles, brightness temperatures calculated by the model, levels 

pressure and the geo-potential altitude and that it is desired to restore moisture to the atmosphere. For this test 

all three channels (50.31, 53.73, 54.96) MSU are taken into account. 

The architecture used is the following: 

 Input: temperature profiles of 11 pressure levels; 

 Water vapor profiles in 11 steps; 

 Air density profiles of 11 levels. 
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We on the first hidden layer neurons 20 and the second hidden layer neurons 20 also. 

Learning neural networks has been performed using the three spectral radiances (50.31 GHz; 53.73z; 54.96 

GHz) at the levels of pressure observation scale, the atmosphere temperatures and levels geopotential. 

Learning is made from convective atmosphere SL influence described in Chapter 2. 

The input vector to the network is made up of geopotential height, pressure level, the value of the survey 

channel radiance expressed in brightness temperature and specific humidity (we want to restore). 

Learning neural networks shall be effected from 6666 results Entries vectors are present in Figure 9. 

Figure 9a shows the parameters during the learning neural network. 

Learning stopped after 1112 iterations, because the increased validation error. This is a useful diagnostic tool to 

trace the training errors, validation and test to check the progress of learning. 

Figure 9B shows that the Bayesian regularization, which assumes that the weights and biases follow specific 

distributions (parameters are estimated as and learning) generally gives very satisfactory results. 

Figure 9 shows comparisons among returned parameters (Outputs) by the network of neurons and initial 

parameters (Target). Network outputs are plotted against the target open circles. The best linear fit is indicated 

by a dotted line. The perfect fit (output equal to the target) is indicated by the solid line. In the figure, it is 

difficult to distinguish the best linear fit line of the curve perfect fit, because the fit is so good. 

We have two exits, so we conducted two regressions. The results are shown in Figure 9C, D. These two outputs 

Figure 9C, D, seem to follow the targets reasonably well, and R values are close to 0.9. 

 

 

 
Figure 9.  Learning Network 
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Analysis of inverted data 
We applied the restitution procedure in a summer atmosphere with the presence or absence of convective 

systems surveyed by the TOVS NOAA 14. Values are expressed in radiance shine temperatures for 50.31 GHz 

channels 53.73GHz, 54.96 GHz. The results obtained are presented in Figure 5.10. and tables (3-9). 

 

In Figure 10, specific humidity is converted to relative humidity. The observed patterns are the average obtained 

from the radiosonde Dakar over the period 1968 -2006. Average monthly radiosonde is that of the month of 

September 1997. 

 

The monthly average of the refund is the average taken from the orbits of September 1997. It was found that the 

monthly average for the return is close to the monthly average of radiosondes in the lower levels. For level 300 

hPa, the values are more distant. 

 

 
Figure 10. Profile of moisture restored compared to average summer humidity. 

 
Table 3.  Monthly average restitution of specific humidity (September 1997). 

Levels retrieval RS: Monthly Average Summer average (1968-2006) 

1012 17.20 17.33 20.96 

700 6.11 6.53 6.99 

300 0.32 0.38 0.35 

 

Note that monthly average is almost close to the average obtained by radiosonde in this climate zone. 

 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[DIOP * et al., 7(12): December, 2018]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [343] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

Table 4.  The return of specific humidity to orbit 1413788 of September 2, 1997 at 3:19 p.m. obtained minutes and 51 

seconds. 

Levels (hPa) retrieval RS network of 12-hour RS: Monthly Average Summer 

average 

1011 16.41 17.62 17.33 20.96 

700 5.84 6.83 6.53 6.99 

300 0.21 0.66 0.38 0.35 

 
Table 5.  The return of specific humidity to orbit 1413788 of September 3, 1997 at 3:09 p.m. obtained minutes 37 seconds 

Levels  (hPa) retrieval RS network of 12-hour RS: Monthly Average Summer average 

1012 15.18 16.58 17.33 20.96 

700 6.29 6.64 6.53 6.99 

300 0.4 0.59 0.38 0.35 

 
Table 6. the return of specific humidity to orbit 1413788 of September 11, 1997 obtained from 22 O'clock 27 minutes 51 

seconds 

Levels   (hPa) retrieval RS network of 12-hour RS: Monthly Average Summer average 

1012 18.57 16.77 17.33 20.96 

700 7.63 7.76 6.53 6.99 

300 0.8 0.04 0.38 0.35 

 
Table 7.  The return of specific humidity to orbit 1413788 of September 20, 1997 at 3:25 p.m. obtained minutes 46 seconds. 

Levels   (hPa) retrieval RS network of 12-hour RS: Monthly Average Summer average 

1010 20.1 19.12 17.33 20.96 

700 9.01 10.26 6.53 6.99 

300 0.1 0.72 0.38 0.35 

 
Table 8. The return of specific humidity to orbit 1413788 of September 25, 1997 obtained 3:17 minutes 32 seconds. 

Levels   (hPa) retrieval RS network of 12-hour RS: Monthly Average Summer average 

1010 20.8 19.8 17.33 20.96 

700 7.3 6.4 6.53 6.99 

300 0.5 0.26 0.38 0.35 

 
Table  9.  The restitution of the specific humidity for the orbit 1413788 of September 30, 1997 obtained at 15 hours 15 

minutes 11 seconds. retrieval of the specific humidity for the orbit 1413788 of September 30, 1997 obtained at 15 hours 

15 minutes 11 seconds. 

Levels   (hPa) retrieval RS network of 12-hour RS: Monthly Average  Summer average 

1010 16.44 16.67 17.33 20.96 

700 6.67 7.33 6.53 6.99 

300 0.4 0.05 0.38 0.35 

 

These orbits were chosen because corresponding to atmospheres where one notes the presence of convective 

systems. 

Radiative transfer codes that we used and modified MODTRAN MPM-Liebe, have allowed us to confrontations 

with satellite observations. In this chapter we have presented a method for reversing the equation of radiative 

transfer based on the technique of neural networks in retro error propagation. The results on simulated data for 

the inversion of MSU data are generally very good. This technique (neural network) was also applied to the fast 

modeling radiative transfer problem and the method of composite analysis shows a low minimization results 

especially at 300hpa. The method is especially highlighted an ability to simulate the channels probing the 

concentration of the variable component as atmospheric water vapor, which is a highly nonlinear problem, and 

therefore poorly understood by the conventional approach linearization around an approximate solution. Other 

significant advantages of this technique are: 

- The low computing time use; 
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- The reduction of several orders of magnitude the number of storing information for the algorithm. 

 

The major drawback is the low algorithm convergence speed (the neural network) during the learning phase, 

which involves the use of long calculation means for this type of application. Comparisons with the calculations 

made from radiances and radiosonde measurement data with NOAA 14 allowed us to open a path to satellite 

survey convective troposphere atmosphere in the Sahel region. The advent of pollsters point to a significant gain 

in quality of restitution. 

 

9. CONCLUSION 
In the Sahelian region of West Africa most of the population lives agro-pastoral activities. The air trafficking, 

which is a source of sustainable development of countries which constitute this climatic zone develops. Hence 

the need for a weather forecast in the short and medium term. 

 

There is a virtual absence of tropospheric radiosonde station in the Sahelian zone and the coastal area of West 

Africa in the summer. The numerical simulation of the atmosphere Sahelian solutions cover and "satellite 

surveys are to promote. The aim of this work is to characterize the atmosphere under the influence of convective 

systems line type of grain to the earth-sea interface. Squall lines produce essential rainfall in the Sahel. This 

work allowed the validation of numerical weather prediction models on the one hand, the other to validate the 

return of meteorological parameters derived from satellite sounders. 

 

The modeling of the energy balance of the atmosphere with the convection necessarily requires consideration of 

radiative transfer. This work has enabled the development of radiative transfer models, coupled with satellite 

observations for a comprehensive study of changes in convective systems. Indeed, it has been shown that 

satellite dimension is essential in any study of the troposphere in this climate zone. 

                                                 

In general, part of the study included deep convection in the Sahel from the radiative energy balance using 

satellite data surveys. In practice, it is current NOAA-TOVS-ATOVS, radiosonde available in the area and re 

analysis NCEP / NCAR. A composite analysis followed by statistical processing, were used to compare the 

dynamic calculated fields to the measured radiance. 

                                                

The first studies we have conducted on this topic, were made with LOWTRAN. MODTRAN an improvement 

compared to the simple diffusion. Compared to results of calculations with this code, it is important to note that 

the profiles of radiance obtained vary according to the poll position that one is in convective part (up to two 

hours after the detection of the SL) or stratiform SL. The spectral signatures of the atmosphere reveals a 

significant gap structures obtained in the comparison of atmospheric diffusion flows for the different time 

classes. Radiative transfer codes that we used MODTRAN and MPM-Liebe [42].  modified allowed us to 

confrontations with satellite observations. We used a method of inverting the radiative transfer equation based 

on the technique of back propagation of the error to neural networks. The results on simulated data for the 

inversion of MSU data are generally very good. This technique has also been applied to the problem of 

modeling and rapid calculation of radiative transfer and the method of composite analysis shows a low 

minimization results especially at 300 hPa. The method is especially highlighted an ability to simulate the 

channels probing the concentration of the variable component as atmospheric water vapor, which is a highly 

nonlinear problem, and therefore poorly understood by the conventional approach linearization around an 

approximate solution. Other important advantages of this technique are, firstly, the low computation time in use, 

on the other hand the reduction of several orders of magnitude the number of storing information for the 

algorithm. The major drawback is the low speed of convergence of the algorithm during the learning phase, 

which involves the use of long calculation means for this type of application. With comparisons between the  

 

radiosonde measurements and measurement data with NOAA 14 allowed us to open a path to satellite survey 

convective troposphere atmosphere in the Sahel region. The advent of sounders and improving fast calculations 

of the equation of radiative transfer point to a significant gain in quality of restitution. This climatological 

cleared over several years of meteorological parameters of this climatic zone is a boon offered to operational 

forecasters West African meteorology and researchers from the world of physics of the atmosphere. 

 

 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[DIOP * et al., 7(12): December, 2018]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [345] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

REFERENCES 
[1] Lafont, D., and B. Guillemet, 2004a: Subpixel fractional cloud cover and inhomogeneity effects on 

microwave beam-filling error, Atmospheric Research, 72, 149-168 

[2]  Lee, J., R. C. Weger, S. K Sengupta, R. M. Welch, 1990: A neural network approach to cloud 

classification, IEEE Trans. Geosci. Rem. Sens., 28, 846-855.  

[3] Welch J.M., A.D. Little and P.R Nayak, 1992. Strategic Sourcing: A progressive approach to make or 

buy decision. Academy Of Management Executive, vol. 6, N°1, p. 23-31 

[4] Bankert, R. L., 1994: Cloud classification of AVHRR imagery in maritime regions using a 

probabilistic neural network, J. Appl. Meteorol., 33, 909-918. 

[5] Bankert, R. L.,  D. W. Aha, 1996: Improvement to neural network cloud classifier, J. Appl. 

Meteorol., 35, 2036-2039. 

[6] Krasnopolsky, V. M., W. H. Gemmill, L. C. Breaker, 2000: A neural network multi parameter 

algorithm for SSM/I ocean retrievals: comparisons and validations, Rem. Sens. Env., 73,133-142. 

[7] Tsintikidis, D., J. L. Haferman, E. N. Anagnostou, W. F. Krajewski, T. F. Smith, 1997: A neural 

network approach to estimating rainfall from spaceborne microwave data, IEEE Trans. Geosci. Rem. 

Sens., 35, 1079-1092. 

[8] Matsoukas, C., Islam, S., Kothari, R., 1998: Fusion of radar and rain gage measurements for an 

accurate estimation of rainfall.Conference: 6th International Conference of Precipitation on 

Predictability of Rainfall at the Various Scales Location: MAUNA LANI BAY, HAWAII Date: JUN 

29-JUL 01, Sponsor(s): Amer Geophys Union; Amer Meterol Soc; Mauna Lani Bay Hotel & 

Bungalows. 

[9] Li, W., V. Chandrasekar, G. Xu, 2003: Investigations in radar rainfall estimation using neural 

networks, Proceedings International Geoscience and Remote Sensing Symposium, Toulouse, France. 

[10] Jung, T., E. Ruprecht, F. Wagner, 1998: Determination of Cloud Liquid Water Path over oceans 

from Special Sensor Microwave Imager (SSM/I) data using neural networks, J. Appl. Meteorol., 37, 

832-844. 

[11] Aires, F., C. Prigent, W. B. Rossow, M. Rothstein, 2001: A new neural network approach including 

first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and 

emissivities over land from satellite microwave observations, J. Geophys. Res., 106, 14887-14907. 

[12] Churnside, J.H., Stermitz, T.A., Schroeder, J.A., 1994:  Temperature profiling with neural-network 

inversion of microwave radiometer data. Journal of Atmospheric and Oceanic Technology, 11, 105 

[13] Bauer, P., E. Moreau, S. Di Michele, 2005: Hydrometeor retrieval accuracy using microwave 

window and sounding channel observations. J. Appl. Meteor., 44, 1016–1032. 

[14]  
[15] Bellerby, T., Todd, M., Kniveton, D., Kidd, C ., 2000: Rainfall estimation from a combination of 

TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial 

neural network . J. Appl. Meteorol.,39, 2115-2128.    

[16] Kuligowki, R. J., and A. P. Barros, 2001: Combined IR-microwave satellite retrieval of temperature 

and dewpoint profiles using artificial neural networks, J. Appl. Meteorol., 40, 2051-2067. 

[17] Yang, C. C., S. O. Prasher, and G. R. Mehuys, 1997: An artificial neural network to estimate soil 

temperature. Can. J. Soil Sci.,77, 421–429 

[18] Fuhrhop, R., T. C. Grenfell, G. Heygster, K. P. Johnsen, P. Schlüssel, M. Schrader, C. Simmer, 

1998: A combined radiative transfer model for sea ice, open ocean, and atmosphere, Radio Sci., 33, 

303-316. 

[19] Jones, C., P. Peterson, C. Gauthier, 1999: A new method for dériving ocean surface specific 

humidity and air temperature: An artificial neural network approach, J. Appl. Meteorol., 38, 1229-

1245. 

[20] Labroue, S., E. Obligis, C. Boone, S. Philipps, 2003: Salinity retrieval from SMOS brightness 

temperatures, Proceedings International Geoscience and Remote Sensing Symposium, Toulouse, 

France. 

[21] Kretzschmar, R., P. Eckert, D. Cattani, 2004: Neural network classifiers for local wind prediction, J. 

Appl. Meteorol., 43, 727-738. 

[22] Faure, T., H. Isaka, B. Guillemet, 2001a: Neural network analysis of the radiative interaction 

between neighboring pixels in inhomogeneous clouds, J. Geophys. Res., 106, 14465-14484. 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://apps.webofknowledge.com.biblioplanets.gate.inist.fr/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1AGj8GOFCPFAGLfFpmj&author_name=Bellerby,%20T&dais_id=3934797
http://apps.webofknowledge.com.biblioplanets.gate.inist.fr/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1AGj8GOFCPFAGLfFpmj&author_name=Todd,%20M&dais_id=3227314
http://apps.webofknowledge.com.biblioplanets.gate.inist.fr/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1AGj8GOFCPFAGLfFpmj&author_name=Kniveton,%20D&dais_id=12212953
http://apps.webofknowledge.com.biblioplanets.gate.inist.fr/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1AGj8GOFCPFAGLfFpmj&author_name=Kidd,%20C&dais_id=12165155
http://apps.webofknowledge.com.biblioplanets.gate.inist.fr/full_record.do?product=WOS&search_mode=GeneralSearch&qid=7&SID=4FP36kdGLN4C1lM2nba&page=1&doc=1
http://apps.webofknowledge.com.biblioplanets.gate.inist.fr/full_record.do?product=WOS&search_mode=GeneralSearch&qid=7&SID=4FP36kdGLN4C1lM2nba&page=1&doc=1
http://apps.webofknowledge.com.biblioplanets.gate.inist.fr/full_record.do?product=WOS&search_mode=GeneralSearch&qid=7&SID=4FP36kdGLN4C1lM2nba&page=1&doc=1


  ISSN: 2277-9655 

[DIOP * et al., 7(12): December, 2018]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [346] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

[23] Faure, T., H. Isaka, B. Guillemet, 2001b: Mapping neural network computation of high resolution 

radiant fluxes of inhomogeneous clouds, J. Geophys. Res., 106, 14961-14974. 

[24] Cornet, C., H. Isaka, B. Guillemet, and F. Szczap, 2004: Neural network retrieval of cloud 

parameters of inhomogeneous clouds from multiscale radiance data: Feasability study, J. Geophys. 

Res., 109, D12203, doi: 10.1029/2003JD004186 

[25] Lafont, D., and B. Guillemet, 2004b: Beam-filling correction with sub-pixel cloud fraction  
                using a neural network, IEEE Trans. Geosci. Rem. Sens., accepté.  

[26] Lafont, D., O. Jourdan, and B. Guillemet, 2004: Mesoscale cloud patterns classification over ocean with a 

neural network using a new index of cloud variability, Int. J. Rem. Sens., accepté.  

[27] http://www.esa.int/export/esaLP/smos.html http://www.cesbio.ups-tlse.fr/us/indexsmos.html) . 

[28] Diop B., 2003: Bilan hydrique Terre-Atmosphere au passage des ligne de grains à Dakar. 

Dokumentacja Geograpficzna,29, 81-84.    

[29] Diop B, Diop A.,2006 : Analyse statistique des profils énergétiques radiatifs de l’atmosphère au 

passage des lignes de grains à Dakar ,), Proceeding ,XIXe Colloque de l’Association Internationale de 

Climatologie, pp190-195. PRODIG, 2006, ISBN 2-9011560-70-9. 

[30] Krasnopolsky, V., Schiller, H., 2003: Some neural network applications in environmental 

sciences. Part I: forward and inverse problems in geophysical remote measurements. Astronomy and 

geosciences, 16, 321-334.    

[31] Yang, C. C., S. O. Prasher, and G. R. Mehuys, 1997: An artificial neural network to estimate soil 

temperature. Can. J. Soil Sci.,77, 421–429 

[32] Cheng, B., Titterington, DM, 1994 [Réseaux de neurones: Un aperçu de la perspective statistique]: 

Réplique. Statist. Sci. 9, no. 1, 49-54. doi: 10.1214 / ss / 1177010646. 

 https://projecteuclid.org/euclid.ss/1177010646  

[33] Cornet, C.,  2003 : Restitution de paramètres nuageux par méthodes neuronales dans des cas de nuages 

hétérogènes à couverture fractionnaire ; thèse d’université Blaise Pascal , 162pp ;  

[34] Krasnopolsky, V. M., W. H. Gemmill, L. C. Breaker, 2000: A neural network multi parameter 

algorithm for SSM/I ocean retrievals : comparisons and validations, Rem. Sens. Env., 73, 133-142. 

[35] Kretzschmar, R., P. Eckert, D. Cattani, 2004: Neural network classifiers for local wind prediction, J. 

Appl. Meteorol., 43, 727-738. 

[36] Lei SHI, 2000: Retrieval of Atmospheric Temperature Profiles from AMSU-A Measurement Using a 

Neural Network Approach, JOURNAL OF ATMOSPHERIC AND OCEANIC 

TECHNOLOGY,8,340-347 

[37] Lee, J., R. C. Weger, S. K Sengupta, R. M. Welch, 1990: A neural network approach to cloud 

classification, IEEE Trans. Geosci. Rem. Sens., 28, 846-855. 

[38] MacKay, D. J. C., 1992a: Bayesian interpolation”. Neural Computation, 4, 415-447. 

[39] MacKay, D. J. C. A.,1992b : Practical Bayesian Framework  for Backpropagation Networks. Neural 

Computation, 4, 448-472. 

[40] Neal, R. M., 1996: Bayesian Training of Backpropagation Networks by the Hybrid Monte Carlo 

Method. Technical Report CRG-TR-92-1, Department of Computer Science, University of Toronto, 

1992. 

[41] Neal, R. M., 1996: Bayesian methods for Neural Networks. New York : Springer- Verlag,. 

[42] Liebe, H. J., G. A. Hufford, and M. G. Cotton, 1993: Propagation modeling of moist air and 

suspended water/ice particles at frequencies below 1000 GHz, AGARD 52nd Specialist Meeting of the 

Electromagnetic Wave Propagation Panel, Brussels, Belgium, 3.1-3.10. 

 

CITE AN ARTICLE 

DIOP, B. (2018). RESTITUTION OF ATMOSPHERIC MOISTURE FROM NEURAL NETWORKS 

AND USING SATELLITE DATA. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & 

RESEARCH TECHNOLOGY, 7(12), 330-346. 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cesbio.ups-tlse.fr/us/indexsmos.html
http://portal.acm.org/author_page.cfm?id=81100223232&coll=GUIDE&dl=GUIDE&trk=0&CFID=72518392&CFTOKEN=39022778#_blank
http://portal.acm.org/author_page.cfm?id=81100243605&coll=GUIDE&dl=GUIDE&trk=0&CFID=72518392&CFTOKEN=39022778#_blank
https://projecteuclid.org/euclid.ss/1177010646

